top of page

PHYS5401 - Medical Imaging Physics


Module 1           Introduction to Medical Imaging

1.1          Introduction

1.2          Medical Imaging Modalities

1.3          X-Ray Imaging Modalities

1.4          Nuclear (Molecular) Imaging Modalities

1.5          Ultrasound

1.6          Magnetic Resonance Imaging (MRI)


Module 2           Maths Review, Image Theories, and Image Perception and Assessment

2.1          Introduction

2.2          Spatial Resolution

2.2.1                The Spatial Domain

2.2.2                The Point Spread Function, PSF
         How does the Point Spread Function affect image quality (what we see)?

2.2.3                The Line Spread Function, LSF

2.2.4                The Edge Spread Function, ESF

2.3          Convolution

2.3.1                Relationships Between Spread Functions

2.4          The Frequency Domain

2.5          Fourier Series and the Fourier Transform

2.6          The Modulation Transfer Function, MTF(f)

2.6.1                Conceptual Description

2.6.2                Practical Measurement

2.6.3                Limiting Resolution

2.6.4                Nyquist Frequency

2.7          Image theory fundamentals

2.7.1                Linear systems theory

27.2                Linearity

2.7.3                Shift invariance or Isoplanatism

2.7.4                Sampling theory

2.8          Contrast

2.8.1                Definition

2.8.2                Contrast types

2.8.3                Optical density

2.8.4                Greyscale characteristics

2.9          Noise

2.10       Contrast-to-Noise Ratio

2.11       Signal-to-Noise Ratio

2.12       Detective quantum efficiency

2.13       Image Perception and Assessment

2.13.1             Human visual system

2.13.2             Human eye

2.13.3             Barten model

2.13.4             Perceptual linearization - Viewing conditions

2.13.5             Specifications of Observer Performance –

2.13.6             Decision outcomes

2.13.7             Specifications of Observer Performance –

2.13.8             Statistical decision theory and receiver operating characteristic methodology

2.13.9             Experimental Methodologies

2.13.10          Contrast–detail methodology

2.13.11          Forced choice experiments

2.13.12          ROC experiments


Module 3                           Introduction to Image Processing & Enhancement

3.1          Introduction

3.2          Image data types

3.3          Spatial resolution

3.4          Basic image processing operations

3.4.1                Histograms

3.4.2                Generating and Plotting Image Histograms

3.5          Noise

3.6          Why perform enhancement?

3.7          Spatial filtering and noise removal

3.7.1                Mean filtering

3.7.2                Gaussian filtering

3.7.3                ‘Ideal’ low pass filter

3.7.4                Median filtering

3.7.5                Image filtering techniques for medical image post-processing

3.8          Image Segmentation

3.8.1                Thresholding

3.9          Image Registration

3.9.1                Intensity-based vs feature-based image registration

3.9.2                Shape-preserving transformations

3.10       Transformation models

3.10.1             linear transformation

3.10.2             2D Rotation transformation

3.10.3             Uniform scaling transformation

3.10.4             Affine transforms

3.11       Artificial Intelligence (AI) in Medical Image Analysis

3.11.1     Deep Neural Networks (DNNs)


Module 4           Tomographic Reconstruction from Projections

4.1          Introduction

4.2          Simple Backprojection

4.3          Filtered Backprojection (FBP)

4.4          Iterative Reconstruction

4.5          FBP versus Iterative Reconstruction


Module 5           Ultrasound Imaging –Review of the physics of sound

5.1          Introduction

5.2          What is sound?

5.3          Describing Sound Waves

5.3.1                Frequency, wavelength and velocity

5.3.2                Amplitude, Pressure, Intensity and the dB scale

5.3.3                Combining Waves

5.3.4                The Doppler Effect

5.4          Interaction of sound waves with matter

5.4.1                Attenuation

5.4.2                Acoustic Impedance

5.4.3                Reflection

5.4.4                Refraction

5.4.5                Scatter


Module 6           Ultrasound Imaging

6.1          Introduction

6.1.1                Physical properties imaged

6.1.2                Clinical applications

6.1.3                Resolution

6.1.4                Pros / cons

6.1.5                Imaging system

6.2          Transducers

6.2.1                Basic transducer design

6.2.2                Transducer Arrays

6.3          Beam Properties and Formation

6.3.1                Near and far field

6.3.2                Side lobes and grating lobes

6.3.3                Beam formation in a linear array

6.3.4                Beam formation in a parallel (phased) array

6.4          Data Acquisition and Image Formation

6.4.1                Pulse echo

6.4.2                Display Modes

6.4.3                2D imaging

6.5          Doppler imaging

6.5.1                Continuous-Wave Doppler

6.5.2                Pulsed Doppler

6.5.3                Duplex Scanning

6.5.4                Doppler Displays

6.5.5                Colour Flow Imaging

6.5.6                Spectral Waveform

6.5.7                Power Doppler

6.6          New Developments


Module 7           Ultrasound Imaging –Artefacts, Safety and Quality Control

7.1          Artefacts

7.1.1                B-Mode Imaging Artefacts

7.1.2                Refraction

7.1.3                Shadowing and Enhancement

7.1.4                Reverberation

7.1.5                Mirror Image Artefacts

7.1.6                Speed Displacement

7.1.7                Side Lobes and Grating Lobes

7.1.8                Ambiguity Artefacts

7.1.9                Slice Thickness

7.2          Doppler Artefacts

7.2.1                Speed Variations across Large Vessels

7.2.2                Speed Variations Caused by Vessel Constriction

7.2.3                Aliasing

7.3          Biological Effects and Safety

7.3.1                Measures of Exposure

7.4          Biological Effects

7.4.1                Thermal Effects

7.4.2                Non-Thermal (Mechanical) Effects

7.4.3                Acoustic Cavitation

7.4.4                Acoustic Streaming

7.5          Safety Indices

7.5.1                Thermal Index (TI)

7.5.2                Mechanical Index (MI)

7.6          Quality Control


Module 8           Basic Principles of X-ray Imaging

8.1          Introduction

8.2          Generation of X-rays for Medical Imaging Heading

8.2.1             The X-ray Tube

8.2.2             The Anode

8.2.3             Inherent filtration

8.2.4             Added filtration

8.2.5             Compensation filters

8.2.6             Anode angle

8.2.7             The Generator

8.2.8             Tube Cooling System

8.3          Interaction of X-rays with Tissue, Attenuation and Contrast

8.3.1             Coherent Scatter

8.3.2             Compton Scatter

8.3.3             The Photoelectric Effect

8.3.4             Overall Attenuation

8.4          Radiography

8.4.1             Physical properties imaged

8.4.2             Clinical applications

8.4.3             Resolution

8.4.4             Pros / cons

8.4.5             Imaging system

8.4.6           Contrast agents

8.5          Image Receptors

8.5.1             Computed Radiography (CR)

8.5.2             Clinical applications

8.5.3             Resolution

8.5.4             Pros / cons

8.5.5             Imaging system

8.6          Image Receptors

8.6.1             Computed Radiography (CR)

8.6.2             Digital Radiography (DR)

8.6.3             Automatic Exposure Control (AEC)

8.7          Factors Affecting Image Quality and Radiation Dose


Module 9           Basic X-ray QC and Dosimetry

9.1          Introduction: What is Quality Control?

9.1.1             Goals of QC and QA

9.2          Disadvantages of Poor Quality Images

9.2.1             Incorrect Diagnosis

9.2.2             Risk of Repeating a Hazardous Procedure

9.2.3             Unproductive Patient Radiation

9.2.4             Patient Inconvenience

9.2.5             Increased Cost

9.3          Factors in Quality Assurance and Quality Control

9.3.1             Equipment Factors

9.3.2             Human Factors

9.3.3             Acceptance Testing

9.4          Dosimetric Quantities

9.4.1             Basic Quantities

9.4.2             Application Specific Quantities

9.4.3             Relationship to stochastic and deterministic effects

9.5          Basic X-ray Quality Control Measurements and Dose Calculation

9.5.1             Measurement of Parameters Required for Dose Calculation

9.5.2             Dose Calculation

9.6          Typical Doses and Dose Reference Levels (DRLs)

9.6.1             Typical Effective Doses

9.6.2             Diagnostic Reference Levels (DRLs)


Module 10        Fluoroscopy

10.1       Introduction

10.1.1          Special demands of fluoroscopy

10.1.2          Physical properties imaged

10.1.3          Clinical applications

10.1.4          Resolution

10.1.5          Pros / cons

10.1.6          Imaging system

10.2       Fluoroscopic Image Detectors

10.2.1          Conventional Vacuum Tube Image intensifier

10.2.2          Flux gain

10.2.3          Minification gain

10.2.4          Overall brightness gain

10.2.5          Pincushion distortion

10.2.6          Flat Panel Digital Fluoroscopic Detectors

10.3       Digital Fluoroscopy (DF)

10.3.1          Digital subtraction angiography (DSA)

10.3.2          Dual energy subtraction

10.3.3          Frame averaging

10.3.4          Last frame hold

10.3.5          Road mapping

10.4       Factors Affecting Image Quality and Radiation Dose


Module 11        Mammography

11.1       Breast cancer

11.2       Introduction – Mammography

11.2.1          Clinical applications: Breast Cancer Screening

11.2.2          Physical properties imaged

11.3       Resolution

11.3.1          Pros / cons

11.3.2          Imaging system

11.4       Mammography X-ray Equipment 

11.4.1          X-ray Tube

11.3.2          Image Detectors

11.3.3          Compression

11.3.4          Use of Grids

11.3.5          Image Display

11.5       Magnification Techniques

11.6       Factors Affecting Image Quality and Radiation Dose


Module 12        Basic Principles of X-ray Computed Tomography

12.1       Introduction

12.2      Gantry

12.2.1          Slip Rings

12.2.2          Generator

12.2.3          Cooling Systems

12.2.4          X-ray Source

12.2.5          Filtration

12.2.6          Collimation

12.2.7          X-Ray Detectors

12.2.8          Xenon Gas Detectors

12.2.9          Solid-State Crystal Detector

12.2.10       Stellar Detector

12.2.11       Physical properties imaged

12.2.12       Clinical applications

12.2.13       Resolution

12.2.14       Pros / cons

12.2.15       Imaging system

12.3       Gantry configuration

12.4       Data Acquisition

12.4.1          Axial / Sequential Acquisition

12.4.2          Helical acquisition

12.5       Image Display

12.6       Factors Affecting Radiation Dose and Image Quality


Module 13        Nuclear Medicine: Introduction & Radionuclides

13.1       Georg Charles de Hevesy: the father of Nuclear Medicine

13.2       Introduction to Nuclear Medicine (NM)

13.2.1          γ emission

13.2.2          β- emission

13.2.3          Isomeric Transition (IT) (or γ Radioactivity)

13.2.4          Internal Conversion (IC)

13.2.5          Positron (β+) and (β+, γ) emission

13.2.6          Electron capture (EC) with X-ray and auger electron emission, and (EC,γ) emission

13.2.7          α emission

13.3       Radionuclides and Radiopharmaceuticals

13.3.1          Reactor-Produced Radioisotopes

13.3.2          Neutron Capture

13.3.3          Cyclotron-Produced Radioisotopes

13.3.4          Radiopharmaceuticals

13.3.5          Generators

13.3.6          Activity Curves for Generators

13.3.7          Characteristics of an Ideal Generators

13.3.8          Radiopharmaceuticals for Therapy Applications

133..9          Desired Properties for diagnostic radiopharmaceuticals

13.3.10       Requirements for all radiopharmaceuticals

13.3.11       GMP in Nuclear Medicine


Module 14        Nuclear Medicine Imaging: Detectors and Gamma Cameras

14.1       Detectors

14.2       Gas filled detectors

14.3      Semiconductor detectors

14.4       Scintillation detectors

14.5       Gamma Cameras

14.5.1          Basic Design

14.5.2          Collimator

14.5.3          Solid-State Detectors

14.6       Types of Gamma Cameras and their Clinical Uses

14.7       Imaging Performance

14.8       Quantification

14.9       DICOM


Module 15        Planar (2D) Imaging - Scintigraphy

15.1       Introduction: Nuclear Medicine Imaging

15.1.1          Physical properties imaged

15.2       Planar Imaging

15.3       Principles of Image Formation

15.4       Clinical applications

15.4.1          Bone Scintigraphy

15.4.2          Lung Scintigraphy

15.4.3          Cardiac Applications

15.4.4          Thyroid Monitoring

15.5       Resolution

15.6       Pros / cons

15.7       Imaging system

15.8       Quality Assurance for Gamma Cameras

15.8.1          Quality Assurance principles


Module 16        Single Photon Emission Computed Tomography (SPECT) and SPECT-CT

16.1       Introduction

16.2       Single-Photon Emission Computed Tomography (SPECT)

16.3       Design and Principles of Operation

16.3.1          Physical properties imaged

16.3.2          Clinical applications

16.3.3          Resolution

16.3.4          Comparison of SPECT and Planar Imaging

16.1.5          Imaging system

16.2       Practical Considerations with SPECT

16.2.1          Attenuation

16.2.2          Chang Uniform Attenuation Correction

16.2.3          Chang Non-Uniform Attenuation Correction

16.2.4          Narrow-beam and Broad-beam attenuation

16.2.5          Scatter Subtraction

16.2.6          The Partial Volume Effect (PVE)

16.2.7          Corrections in Iterative Reconstruction

16.3       Performance and QA of SPECT systems

16.3.1          Acquisition Parameters

16.3.2          SPECT flood-field uniformity

16.3.3          Correction of non-uniformity

16.3.4          Centre-of-Rotation (COR)

16.3.5          Detector Alignment

16.3.6          Attenuation Correction in SPECT

16.4       SPECT-CT


Module 17        Positron Emission Tomography (PET)

17.1       Introduction

17.1.1          Physical properties imaged

17.1.2          Clinical applications

17.1.3          Resolution

17.1.4          Pros / cons

17.1.5          Imaging system

17.1.6          PET Detector

17.2       Annihilation Coincidence Detection (ACD)

17.1.6          Time-of-Flight in PET Imaging

17.3      Data Acquisition

17.3.1          Types of Events

17.4       Factors Effecting Resolution & Image Quality

17.4.1          Resolution of PET Imaging

17.5       SPECT vs PET imaging

17.6       Standardised Uptake Value (SUV)

17.7       Quality Assurance for PET Scanners

17.7.1           Important principles in PET QA

17.8       PET-CT

17.9       3D Image Reconstruction for PET-CT

17.19.1         Reconstruction process

17.19.2         Analytic vs Iterative Reconstruction

17.19.2         Filtered back projection (FBP)

17.19.3         Image acquisition (forward projection)


Module 18        Non-imaging procedures and QC tests for Nuclear Medicine

18.1       Non-imaging procedures

18.1.1          51Cr red cell labelling procedures

18.2       Quality Control of Nuclear Medicine Instrumentation

18.2.1          Dose calibrator

18.2.2          Geiger-Mueller counter

18.2.3          Ionization chamber

18.2.4          Scintillation (gamma) cameras

18.2.5          Resolution

18.2.6          Count Rate and Dead Time

18.2.7          Field Uniformity

18.2.8          Image Display and Processing

18.2.9          PET Cameras

18.2.10       SPECT/CT and PET/CT Image Registration

18.2.11       QC for the CT component

18.3       NEMA Specifications for Performance Measurements of Scintillation Cameras

18.4       IEC International Standards

18.5       IAEA-NMQC Toolkit

18.6       Radioactive Waste Management

Module 19        Internal radionuclide dosimetry and radionuclide therapy

19.1       Internal radionuclide dosimetry

19.1.1          Introduction

19.1.2          The MIRD scheme for internal dosimetry

19.1.3          Description of terms

19.1.4          Doses from diagnostic studies

19.1.5          Radionuclide therapy dosimetry

19.2       Radionuclide therapy

19.3       Dose Limits to Radiation Workers and Others

19.3.1          Occupational exposure

19.3.2          Hospital workers

19.3.3          Risk of radioiodine treatment to a foetus

19.3.4          Exposure for the general public


Module 20        Nuclear Magnetic Resonance (NMR) – Basic  Principles and Physics

20.1       Introduction

20.2       The History of MRI

20.3       Magnetism

20.3.1          Nuclear magnetic characteristics

20.3.2          Magnetic Susceptibility

20.3.3          Diamagnetism, Paramagnetism, and Ferromagnetism

20.3.4          Radio Frequency Pulse

20.3.5          Radio Frequency Pulse

20.3.6          Resonance

20.3.7          Rotating Frame of Reference

20.3.8          T1, T2, and T2*

20.3.9          TR, TE, and Tissue Contrast


Module 21        Tissue Contrast: Some Clinical Applications

21.1       Introduction

21.2       T2 Characteristics

21.3       T1 Characteristics


Module 22        Pulse Sequences:  Part I (Saturation, Partial Saturation, Inversion Recovery)

22.1       Introduction

22.2       Saturation

22.2.1          Partial Saturation Pulse Sequence

22.2.2          Saturation Recovery Pulse Sequence

22.2.3          Inversion Recovery Pulse Sequence

22.2.4          Null Point

22.2.5          Clinical Applications of Inversion Recovery

22.2.6          Magnitude Reconstruction

22.2.7          Fat Suppression: STIR Imaging


Module 23        Pulse Sequences: Part II (Spin Echo)

23.1       Introduction

23.2       Spin-Echo Pulse Diagram

23.3       Analogy

23.4       Symmetric Echoes

23.5       Asymmetric Echoes

23.6       Tissue Contrast


Module 24        Image Construction: Part I (Slice Selection)

24.1       Introduction

24.2       How to Select a Slice

24.3       Slice Thickness

24.4       Cross-Talk

24.5       How to Change the Slice Thickness

24.6       Slice-Select Gradient


Module 25        Image Construction: Part II (Spatial Encoding)

25.1       Introduction

25.2       Frequency Encoding

25.2.1          Back Projections

25.2.2          2DFT: 2-Dimensional Digital

25.3       Phase Encoding


Module 26        Advanced MRI Imaging, Image Quality, Artefacts, and Safety in MRI

26.1       Factors affecting image quality

26.1.1          Resolution

26.1.2          Contrast

26.1.3          SNR

26.1.4          Effects of flow on signal

26.3       Artefacts

26.3.1          DC offset and quadrature ghost

26.3.2          RF noise

26.3.3          Magnetic field inhomogeneity

26.3.4          Gradient

26.3.5          Susceptibility

26.3.6          RF Inhomogeneity

26.3.7          Motion

26.3.8          Flow

26.3.9          Chemical shift

26.3.10       Partial volume

26.3.11       Wrap around

26.3.12       Gibbs ringing

26.4       Common MR contrast agents

26.5       Clinical applications of different sequences

26.5.1          Metabolic

26.5.2          Anatomic

26.5.3          Flow imaging

26.5.4          Cardiac measurements

26.6       Magnetic resonance spectroscopy

26.7       Diffusion Tensor Imaging (DTI)

26.8       Basic Principles of Diffusion

26.8.1          Brownian Motion

26.8.2          The nature of diffusion

26.8.3          Isotropic Diffusion

26.8.4          Anisotropic Diffusion

26.9       Magnetic Resonance Diffusion-Weighted Imaging

26.9.1          Diffusion-Weighted Imaging

26.9.2          Stejskal-Tanner Sequence

26.9.3          Diffusion Tensor Imaging

26.9.4          Quantitative Parameters of the Diffusion Tensor

26.9.5          Trace and Mean Diffusivity

26.9.6          Fractional Anisotropy

26.10    Post-Processing of DTI Data

26.10.1       Quality of DTI Data

26.10.2       Diffusion Tensor Masks

26.10.3       Visualization of DTI Parameters

26.11    Tractography

26.11.1       Limitations

26.11.2       Tract-Based Spatial Statistics

26.12    Functional Magnetic Resonance Imaging (fMRI)

26.12.1       Application of fMRI?

26.13    MR angiography (MRA)

26.14    MRI Quality Assurance (QA)

26.15    Field Uniformity

26.16    Safety, standards and environmental aspects

26.16.1       Introduction:

26.16.2       How safe is MRI?

26.16.3       Room shielding

26.17    Mechanisms of EM Radiation Interaction and Biological Effects

26.18    Safety Procedures

PHYS5402 - Radiation Biology and Protection



The Role of Radiation Biology


Module 1   Review of Radiation and Human Biology
1.2Ionising radiation
1.3Radiation interactions with matter
1.3.1  Photons

1.3.2  Photoelectric effect

1.3.3  Compton effect

1.3.4  Pair production

1.3.5  Electrons

1.3.6  Neutrons

1.4Human Biology
1.4.1    Introduction on Human Radiation Response

1.4.2    Human Radiation Response

1.4.3    Human Responses to Ionizing Radiation

1.4.4    Composition of the Body

1.4.5    Cell Theory

1.4.6    Molecular Composition

1.4.7    The Human Cell

1.4.8    Cell Function

1.4.9    Cell Proliferation

1.4.10 Mitosis

1.4.11 Meiosis

1.4.12 Tissues and Organs


Module 2   The Effect of Radiation on DNA
2.2DNA: the target
2.3Direct and Indirect Action of Radiation
2.4Cellular response to ionising radiation
2.4.1  SSB and DSB damage

2.4.2  Consequence of DNA damage

2.4.3  The major pathways of DNA repair


Module 3    The Cell Cycle and Mechanisms of Cell Death
3.1 The cell cycle and cellular radiosensitivity
3.2Cell Death
3.3Tumour cell death

Module 4   Quantifying Cell Death
4.1 Introduction
4.2Measuring loss of reproductive ability in cells
4.2.1 Clonogenic assay

4.3Target theory
4.3.1 Single hit single target theory

4.3.2 Single hit multiple target theory

4.3.3 Introduction to the Linear Quadratic model

4.4Cell survival curves

Module 5   Characterization of Radiation Damage
5.1Characterisation of radiation damage
5.1.1  Lethal damage

5.1.2  Sublethal damage (SLD)

5.1.3  Potentially lethal damage (PLD)

5.1.4  Non-lethal damage

5.1.5  Summary


Module 6   LET and RBE
6.1Linear energy transfer (LET)
6.2Relative biological effectiveness (RBE)
6.2.1                Definition

6.2.2                RBE as a function of LET


Module 7   Tumour Biology
7.1Normal cells versus malignant cells
7.1.1                Self—sufficiency in growth signals

7.1.2                Insensitivity to antigrowth signals

7.1.3                Evasion of apoptosis

7.1.4                Unlimited replicative potential

7.1.5                Sustained angiogenesis

7.1.6                Tissue invasion and metastasis

7.2Tumour growth characteristics
7.2.1                Tumour kinetic parameters

7.2.2                Tumour composition and characteristics of tumour cells

7.3Tumour angiogenesis
7.3.1                Early research

7.3.2                Characteristics of tumour vasculature


Module 8     Factors influencing local tumour control– the 5 Rs
8.1Tumour behaviour during radiotherapy
8.2The 5 Rs of radiobiology
8.2.1                Repair

8.2.2                Repopulation

8.2.3                Redistribution

8.2.4                Reoxygenation

8.2.5                Radiosensitivity


Module 9     The Effect of Oxygen
9.1.1                The oxygen ‘fixation’ hypothesis

9.2Hypoxia Definitions
9.3 Oxygen Enhancement Ratio (OER)
9.3.1                OER as a function of LET

9.4 Methods to detect (measure) tumour hypoxia
9.5 Methods to overcome tumour hypoxia

Module 10     Normal Tissue Response to Radiation
10.1Radiation response and tolerance of normal tissue: early versus late effects
10.2Functional sub—units (FSU)
10.3Clinical response of normal tissue
10.3.1             Skin

10.3.2             The hematopoietic system

10.3.3             Lung

10.3.4             Spinal cord

10.4Volume effects in normal tissues
10.5Bystander effect and adaptive response
10.5.1             Bystander effect

10.5.2             Adaptive response

10.5.3  Conflicting phenomena at low—doses:

10.6Medical dictionary

Module 11     Predictive assays and disease staging
11.2Predictive assays
11.2.1  Predictive assays for tumour response

11.2.2  Predictive assays for normal tissue response

11.3Disease staging
11.4Glossary — tumour volume

Module 12     Modelling in Radiobiology
12.2Administered dose
12.2.1             Dose response curves

12.2.2             Dose volume histograms

12.2.3             In vivo dosimetry

12.3Tumour control vs. healthy cell damage
12.3.1             NTCP

12.3.2             TCP


Module 13     Fractionation – the LQ Approach
13.2Linear Quadratic Model
13.3Surviving Fraction at 2 Gy
13.4Biologically effective doses (BED) in radiotherapy
13.4.1             Continuous Hyperfractionated Accelerated Radiation Therapy (CHART)


Module 14    Specialized Radiotherapy Treatments
14.2Radiobiology in specialized radiotherapy treatments
14.2.1             Stereotactic Radiosurgery (SRS) and stereotactic radiation treatment (SRT)

14.2.2             Brachytherapy

14.3Adjuvant therapies in the treatment of cancer



Module 15     Health Effects of Exposure to Ionising Radiation
15.2Deterministic and stochastic effects of radiation
15.2.1 Deterministic effects

15.2.2 Stochastic effects

15.4Probability of Carcinogenesis from Low—Level Exposure
15.4.1             Types of study

15.4.2             Dose-­‐Response Models

15.4.3             Measures of Risk

15.4.4             Assignment of Causation

15.4.5             Statistical methods

15.4.6             Probability of Causation

15.5Mutagenesis Risk from Low—Level Exposure
15.6High—Level Exposure

Module 16     Radiation Protection Quantities and Units
16.2Absorbed dose
16.3Radiation weighting factors
16.4Equivalent dose
16.5Tissue weighting factors
16.6Effective dose

Module 17    Introduction to Radiation Protection - Dose Limits
17.2International Bodies
17.3Internationally recommended dose limits
17.4Australian dose limits
17.4.1             Schedule 1 - Dose limits and maximum permissible exposure levels

17.5United States dose limits
17.6Occupational Exposure

Module 18     Shielding Calculations in Medical Radiation Equipment Installation
18.2Limiting exposure
18.3Shielding Design Considerations of High Energy Therapy Machines
18.3.1             Doors

18.3.2             Neutrons

18.4Estimating the Barrier Thickness
18.4.1             Primary Radiation Barrier

18.4.2             Secondary Radiation Barrier for Leakage Radiation

18.4.3             Secondary Radiation Barrier for Scattered Radiation

18.4.4             TVL calculation method

18.4.5             Doors and Mazes

18.5Radiological Survey

Module 19    Personnel Protection and Radiation Monitoring
19.2Protection of Workers and Patients
19.3Film Badges
19.4Pocket Dosimeters
19.5Storage Phosphor Badges (TLD and OSL)
19.5.1             TLDs for personnel monitoring

19.5.2             Optically Stimulated Luminescence

19.6Biological dosimetry
19.6.1             Short term methods

19.6.2             Long term methods


Module 20    Radiation Accidents and Incidents
20.2Accident: Chernobyl
20.3Accident: Fukushima—Daiichi
20.4Other Incidents and Accidents

Module 21    WA Radiation Protection Legislation
21.1The Need for Legislation
21.2Australian Radiation Protection
21.3Western Australian Legislation
21.4WA Radiation Safety Act 1975
21.4.1   Application of Act and exemptions

21.5WA Radiation Safety (Qualifications) Regulations 1980
21.6WA Radiation Safety (Transport of Radioactive Substances) Regulations 2002
21.7WA Radiation Safety (General) Regulations 1983
21.8The future harmonisation of radiation safety in Australia

Module 22    WA Radiation Safety Regulations
22.1Part I — Preliminary
22.2Part II — General precautions and requirements relating to radiation safety
22.3Part III — Radioactive substances
22.4Part IV — Irradiating apparatus
22.5Part V — Electronic products
22.6Part VI — General
22.7Schedule I
22.7.1             References

PHYS5403 - Radiotherapy Physics


Module 1    Review of Radiation Physics
1.1    Introduction to Radiation Oncology Physics
1.2    Different uses of radiotherapy 
1.3    Review of physical quantities and units 
1.4    Radiation and radioactivity
1.4.1  Classification of radiation
1.4.2. Radioactivity
1.5    Interaction of ionizing radiation with matter
1.6    Electron Interactions
1.7    Attenuation of radiation

Module 2    Radiobiological Basis for Radiotherapy
2.1    Introduction: cancer
2.2    Biology of cells and their response to radiation
2.2.1  Quality of radiation deposited in cell
2.2.2  Effects of radiation on biological tissues
2.3    Measurement of radiation damage
2.4    TCP, NTCP and therapeutic ratio
2.5    Oxygen
2.6    Fractionation in radiotherapy

Module 3    Calibration Protocols
3.1    History
3.2    Introduction
3.3    Calibration Protocols
3.3.1  Historical Perspective
3.3.2 Radiation Treatment Parameters
3.3.3 Inverse square law
3.3.4 KERMA
3.3.6  Air kerma in air method (TRS-277): A Primary standard
3.3.7  The Australasian Protocol
3.3.8  Absorbed dose determination in external beam radiotherapy (TRS-398)
3.3.9 Measurement of Dose Distribution  Beam Profiles Depth Dose Curves (penetration of photon beams into a phantom or patient) Buildup region Depth of dose maximum zmax Exit dose Isodose Charts
3.3.10 Penetration of Photon Beams into a Phantom or Patient
3.3.11 Surface dose

Module 4    Radiotherapy Treatment Machines I: Overview
4.1    Overview
4.2    Historical introduction
4.3    X-ray generators
4.4    Bremsstrahlung
4.4.1 Heat
4.5    Thin-target and thick-target bremsstrahlung radiation
4.6    The continuous spectrum emitted by thick targets
4.7    Gamma ray beams and gamma ray units
4.7.1     Introduction
4.7.2     Construction of a 60Co Teletherapy Unit
4.7.3     Generation of a beam by a 60Co unit
4.7.4     Radiotherapy in Low and Middle Income Countries
4.8    Choice of Radiation Beam and Prescribed Target Dose

Module 5    Radiotherapy Treatment Machines II: Particle Accelerators
5.1    Introduction
5.1.1 Particle Accelerators in Medicine
5.2    High energy (megavoltage) machines – design considerations
5.3    Betatron
5.4    Cyclotron

Module 6    Radiotherapy Treatment Machines III: Linacs
6.1    Medical linear accelerator: Principle of operation
6.2    Structure of medical linear accelerators
6.3    Medical linear accelerator: generators
6.3.1 The electron gun (injection system)
   6.3.2  RF power generation system
6.4    Medical linear accelerator: Accelerating structure
6.4.1  Accelerating waveguide
6.4.2  Steering coils
6.5    Medical linear accelerator: Beam delivery system
6.5.1 Auxiliary systems
6.5.2 Beam transport system
6.5.3 Treatment head
6.5.4 X-ray target
6.5.5 Flattening filter
6.5.6 Beam monitoring system
6.5.7 Beam collimation
6.5.8 Primary or fixed collimator
6.5.9 Secondary collimator (Jaws)
6.5.10 Multileaf collimators
6.6    Production of clinical electron beams in a linac
6.6.1 Field shaping
6.7    Safety in beam delivery

Module 7     Specification and Acceptance Testing of a Linear Accelerator
7.1     Accelerator specifications and machine-selection criteria
7.2    Measurement Equipment
7.2.1 Radiation survey equipment
7.2.2 Ionometric dosimetry equipment
7.2.3 Other dosimetric detectors (film, diodes)
7.2.4 Phantoms 
7.3    Acceptance Tests
7.3.1 Acceptance Tests of Radiotherapy Equipment: Characteristics
7.3.2 Safety checks
7.4    Radiation Survey
7.5    Leakage Tests
7.5.1 Collimator and head leakage
7.5.2 Mechanical Checks Collimator axis of rotation Photon collimator jaw motion Congruence of light and radiation field Gantry and couch axis of rotations Radiation isocentre Optical distance indicator Gantry angle indicators Collimator field size indicators Patient treatment table motions
7.5.3    Dosimetry Measurements for Radiation Beam Performance Photon energy Photon beam uniformity Photon penumbra Electron energy Electron beam bremsstrahlung contamination Electron beam uniformity Monitor characteristics Arc therapy

Module 8    Commissioning of a Linear Accelerator
8.1    Introduction
8.2    Characterising the beam
8.2.1 Central axis percentage depth doses (PDDs)
8.2.2 Transverse beam profiles
8.2.3 Wedge Profile Data
8.2.4 Output factors
8.2.5 Blocking tray factors and other attenuation factors
8.2.6 Central axis percentage depth doses values Penumbra Output factor Leakage

Module 9    Beam Data Acquisition
9.1    Beam data acquisition system (BDAS)
9.1.1 Water phantom
9.1.2 Field and reference probes
9.1.3 Electrometer and controller
9.1.4 Computer
9.1.5 Equipment required
9.2    Data collection program
9.2.1 BDAS Parameters Which can Affect Data
9.2.2 Procedure
9.2.3 Responsibility

Module 10    Quality Assurance of Treatment Machines
10.1     Introduction
10.1.1 Definitions
10.2     Legal obligations
10.3     Secondary standard equipment
10.3.1 Ionisation chamber
10.3.2 Measuring assembly (electrometer)
10.3.3 Portable stability check source
10.4     Transfer of secondary standard to field instruments
10.4.1 Cross-calibration of field ionization chambers
10.5     Method of calibration of superficial X-ray therapy treatment (SXRT) and deep X-ray therapy treatment (DXRT)
10.6     Method of calibration of high energy machines
10.7     Quality assurance tests on radiotherapy treatment machines

Module 11     Treatment Planning Techniques: Planning Computer& Beam Models
11.1     Background & History 
11.2     Introduction
11.2.1 Principal hardware components of a Treatment Planning (TP) system
11.2.2 TP hardware systems can be classified into
11.2.3 Software of a TP system includes components
11.3     Treatment planning algorithms – beam models
11.4     Photon Dose Calculation: Algorithmic Methods
11.5    Kernel Based Algorithms
11.6    Ray Tracing
11.7    Pencil Beam
11.8    Steps in computing pencil beam dose
11.9    Convolution / Superposition Algorithms
11.10    Steps in computing convolution/superposition dose
11.11    Boltzmann Transport Equation
11.12    Steps in computing Boltzmann Transport Equation dose (Acuros)
11.13    Monte Carlo (MC)
11.14    Steps in computing Monte Carlo Dose
11.15    Techniques for accelerating Monte Carlo calculations
11.16    Calculation in a heterogeneous medium
11.17     TAR planning tools (power law and equivalent)
11.18     Use of CT in radiotherapy treatment planning
11.19     Quality assurance in Treatment planning

Module 12    Treatment Planning Techniques: Monte Carlo and Superposition /Convolution Models
12.1     Introduction
12.2     The Monte Carlo simulation process
12.3     Sampling using random numbers
12.4     Example Monte Carlo system
12.5     Theory of superposition
12.6     Comparison with experimental results (limitations of model-based algorithms)
12.7     Benchmarking Photon Dose Calculations
12.8     Summary

Module 13    Patient Treatment Planning
13.1     The process of radiation therapy and definitions related to patient planning
13.1.1 Target volume definition
13.2     Patient data acquisition
13.3     X-ray simulator
13.4     CT simulator
13.5     Imaging Moving Anatomy
13.6     Four-dimensional Computed Tomography Scanning
13.7     Cone-Beam Computed Tomography
13.8     Treatment planning room
13.9     Mould room
13.10    Conclusion

Module 14     Treatment Delivery Techniques: Photon Single Beam
14.1     Introduction 
14.2     Direct patient dose calculations
14.2.1 In-Vivo Dosimetry
14.2.2 Purpose of In-Vivo Dosimetry
14.2.3 In-Vivo Dosimeters
14.3     Methodology
14.4     Skin Dose Measurements
14.5     Entrance Dose Measurements
14.6     Exit Dose Measurements
14.7     Alteration of isodose curves by contour shape and tissue inhomogeneities
14.7.1 Single field isodose distributions in patients
14.7.2 Corrections for contour irregularities
14.7.3 Corrections for tissue inhomogeneities
14.8     Beam modifying devices
14.8.1 Wedge Filters
14.8.2 Compensating filters (Tissue Compensation)
14.8.3 Bolus/energy degraders
14.9      Energy absorption in tissue and integral dose
14.10     Multiple Beam Combinations
14.10.1 Objectives
14.10.2 Introduction
14.10.3 Weighting and normalization
14.10.4 Fixed source to surface distance versus isocentric techniques
14.11     Patient dose distribution using opposing pairs of beams and combinations of opposing pairs
14.12     Prediction of dose distribution for angled field, wedge pairs, three field technique and rotation therapy
14.13     Rotational techniques

Module 15    Photon Treatment Delivery: Conformal Radiotherapy 1
15.1     Introduction 
15.2     Principles of conformal radiotherapy
15.3     Implementation of CFRT and IMRT
15.4     Intensity modulated radiotherapy (IMRT)
15.5     Wedges
15.5.1  Physical Wedges
15.5.2  Flying Wedges
15.5.3  Dynamic Wedges
15.6     Multi leaf collimators
15.7     Dose accuracy and uncertainty, quality assurance

Module 16     Photon Treatment Delivery: Conformal Radiotherapy 2
16.1     Introduction to modern conformal radiotherapy techniques
16.1.1  Volumetric Intensity Modulated Arc Therapy (VMAT)
16.1.2  Tomotherapy and Real-time tracking

Module 17    Treatment Planning & Delivery for Electron Therapy
17.1    Introduction 
17.2    Physical aspects of the electron beam
17.2.1  Output Calibration
17.2.2 Central axis Depth Dose Curves
17.2.3 Absorbed dose build-up
17.2.4 Isodose distribution
17.3    Field shaping
17.4    Bolus
17.5    Treatment planning
17.6    Electron arc therapy
17.7    Whole body electron irradiation (Total Skin Irradiation)

Module 18     Treatment Delivery Verification
18.1     Equipment Used in External Beam Radiotherapy: A summary
18.2     Introduction
18.2.1  Accidents in radiotherapy
18.3     Checking the patient chart
18.4     Radiation therapy plan checks
18.5     Structure of an equipment quality assurance program
18.6     Machine operation
18.7     Portal imaging
18.7.1  Electronic Portal Imaging Devices EPIDs (MV imagers)
18.7.2  Why are EPIDs important?
18.7.3  Imager calibration
18.7.4  Applications of EPIDs
18.8     In-vivo measurements 
18.9     Gel dosimetry
18.10     Record and verify system
18.11     Implementation of the record and verify system
18.12     Biological modelling
18.13    Radiotherapy Treatment Side-Effects

Module 19     Special Techniques in Radiotherapy 1
19.1     Introduction
19.2     Superficial and Orthovoltage
19.3     Intra-operative radiotherapy
19.3.1 Orthovoltage X-rays
19.3.2 Superficial X-rays
19.4     Stereotactic Radiotherapy
19.5     Stereotactic Body Radiation Therapy
19.5.1 History
19.5.2 SBRT/ SABR
19.6     Total body irradiation
19.7     Flattening filter free beams
19.8     Image-Guided Radiation Therapy (IGRT)
19.8.1 ExacTrac/Novalis Body System
19.9     Respiratory Gating
19.9.1 Four-dimensional Computed Tomography
19.10     CyberKnife
19.11     Tomotherapy
19.12     A Hybrid Linac MRI System (MR-Linac)
19.12.1 Benefits of MRI
19.12.2 FLASH radiotherapy: Aims to reduce radiotherapy toxicity

Module 20    Special Techniques in Radiotherapy 2
20.1     Introduction
20.2     Proton beam therapy
20.3     Light and Heavy Ion Therapy
20.4     Neutron generators
20.5     Unsealed Sources

Module 21    Principles of Brachytherapy I
21.1     Introduction
21.2     Overview of brachytherapy
21.3     Brachytherapy compared to EBRT
21.4     Sources and applicators (LDR, PDR, HDR)
21.5     Radiation protection and patient monitoring
21.6     LDR seeds
21.7     Brachytherapy for breast cancer

Module 22    Principles of Brachytherapy II
22.1     Introduction
22.2     Principles of brachytherapy dosimetry
22.3     Dose prescription and reporting in brachytherapy
22.3.1 Intracavitary treatments
22.3.2 Interstitial treatments
22.4     Brachytherapy planning
22.5     Calculation of actual treatment dose and dose optimization
22.6     Source storage and transportation

PHYS5404 - Radiation Physics and Dosimetry


Module 1           Radiation Basics
1.1 Radiation
1.2 Classification of Radiation
1.3 Electromagnetic Spectrum
1.4 Non-Ionizing Radiation
1.5 Ionizing radiation 
1.6 Directly Ionizing Radiation
1.6.1 Electrons
1.6.2 Positrons
1.6.3 Heavy Charged Particles
1.6.4 Pions 
1.7 Indirectly Ionizing Radiation
1.8 Non-Ionising Radiation: Physical Hazards
1.8.1 Introduction
1.8.2 The impact of non-ionising EMR on the body
1.8.3 Extra Low Frequency Radiation
1.8.4 ELF Health effects
1.8.5 Radio Frequency Radiation
1.8.6 RF Health effects
1.8.7 InfraRed Radiation
1.8.8 IR Health effects
1.8.9 Visible Light
1.8.10 Visible Light Health effects
1.8.11 Ultraviolet Radiation
1.8.12 UV Health effects
1.8.13 Lasers
1.8.14 Lasers Health effects

Module 2          Sources of Radiation: Natural
2.1 Introduction
2.2 External radiation
2.2.1 Terrestrial radiation
2.2.2 Cosmic radiation 
2.3 Internal Irradiation 
2.3.1 Potassium-40
2.3.2 Rubidium-87
2.3.3 Uranium-238 series
2.3.4 Thorium-230
2.3.5 Radium-226
2.3.6 Radium Girls: Nuclear labour issues
2.3.7 Radon-222 subseries (222Rn, 218Po, 214Pb, 214Bi, 214Po)
2.3.8 Pb-210 subseries (210Pb, 210Bi, 210Po)
2.3.9 Thorium-232 series
2.3.10 Thorium-232
2.3.11 Radium-228 subseries (228Ra, 228Ac, 228Th, 224Ra)
2.3.12 Radon-220 and its decay products (216Po, 212Pb, 212Bi 212Po, 208Ti)
2.3.13 238U and 232Th series comparison
2.4 Summary

Module 3         Sources of radiation: Artificial
3.1 Introduction
3.2 Medical sources
3.3 Radionuclide and Radiopharmaceutical Production
3.4 Power Reactors
3.5 Nuclear fuel cycle
3.5.1 Mining and Milling
3.5.2 Effluents
3.5.3 Uranium Fuel Fabrication
3.5.4 Reactor Operation
3.5.5 Effluents
3.5.6 Carbon-14 Effluents
3.5.7 Fuel Reprocessing
3.5.8 General parameters for different reactor types
3.5.9 Health Consequences of Chernobyl
3.5.10 Nuclear power in Australia
3.6 Online Educational Resources
3.6.1 International Atomic Energy Agency (IAEA)
3.6.2 nternational Commission on Radiological Protection (ICRP) 
3.6.3 Society of Nuclear Medicine and Molecular Imaging (SNMMI)

Module 4           Nuclear Structure & Stability
4.1 Units
4.1.1 Electron Volt (eV)
4.1.2 Atomic mass unit (amu)
4.2 Basic Atomic Structure
4.2.1 Nuclides
4.3 Nuclear Binding Energies
4.3.1 Nuclear Binding Energy Curve
4.3.2 The iron limit
4.4 Nuclear Models
4.4.1 Liquid drop model
4.4.2 Nuclear Shell model
4.5 Nuclides
4.6 Radioactivity
4.6.1 The discovery of radioactivity
4.6.2 Radioactivity
4.6.3 Radioactive decay

Module 5          Radioactivity: Modes of Decay
5.1 Types of decay
5.2 Beta decay
5.2.1 Beta minus decay
5.2.2 Electron capture
5.2.3 Beta plus decay
5.3 Gamma decay
5.3.1 Gamma ray emission
5.3.2 Internal conversion
5.3.3 Alpha decay & Spontaneous fission
5.3.4 Alpha decay
5.3.5 Spontaneous fission
5.4 Proton & Neutron emission
5.4.1 Proton emission
5.4.1 Neutron emission
5.5 Branching Decay

Module 6           Radioactivity: Kinetics
6.1 Activity
6.1.1 History
6.1.2 Units
6.2 Half-life
6.2.1 Activity
6.3 Specific Activity
6.4 Multiple Radionuclides
6.4.1 Parent/daughter decay
6.4.2 Decay Equilibria
6.4.3 Branching Decay Constant and Branching Fraction

Module 7           Charged Particle Interactions I
7.1 General Aspects of Energy Transfer 
7.1.1 Hard (Close) Collision
7.1.2 Soft (Distant) Collision
7.1.3 Charged Particle Interaction with Coulomb Field of the Nucleus (Radiation Collision)
7.2 General Aspects of Stopping Power

Module 8           Charged Particle Interactions II
8.1    Interactions of electrons with matter: A summary
8.2    Collision Stopping Power for Light Charged Particles
8.2.1    Ionizational (collisional) interactions and ionizational stopping power
8.2.2    Radiative interactions and radiative stopping power
8.2.3    Total stopping power
8.2.4    Stopping power in compounds and mixtures
8.3    Linear energy transfer (LET)
8.4    Range
8.5    Electrons
8.6    Relativistic Physics Cheat Sheet 

Module 9           Photon interactions I
9.1.1    Ionization
9.2    General Aspects of Photon Interactions with Absorbers
9.3    Photon interactions with matter
9.3.1    Rayleigh scattering (Coherent scattering)
9.3.2    Photoelectric effect
9.3.3    Incoherent Scattering (Compton Effect)
9.3.4    Pair production
9.3.5    Summary: General Aspects of Photon Interactions with Absorbers

Module 10           Photon Interactions II
10.1    Introduction
10.2    Types of indirectly ionizing photon radiation
10.3    Attenuation of radiation (X, Gamma)
10.4    Attenuation coefficients
10.5    Characteristic Absorber Thicknesses
10.6    Effective energy
10.7    Other Attenuation Coefficients and Cross Sections
10.8    Low LET and High LET Radiation
10.8.1    Energy Loss of a Charged Particle due to Its Interaction with the Electrons

Module 11           Proton and Neutron Interactions
11.1    Physical Properties of Protons 
11.1.1 Introduction and summary
11.1.2 Nature of the particle
11.1.3 Stopping power
11.1.4 Particle range
11.1.5 Multiple Coulomb scattering
11.1.6 Dependence of stopping power and scattering on atomic number
11.1.7 Bragg peak
11.2     Proton interactions with matter
11.2.1 Proton interactions with electrons: Energy loss
11.2.2 Proton interactions with nuclei: nuclear reactions
11.2.3 Proton dose distribution
11.2.4 Fragmentation: Protons and recoiled fragments
11.2.5 Proton therapy treatment planning 
11.2.6 Uncertainties in proton planning
11.3    General aspects of Neutron interactions
11.4    Fast neutron radiotherapy
11.5    Boron Neutron Capture Therapy

Module 12           Ionization in Gases and Solids
12.1 Introduction
12.2 Ionization in gases
12.3 Ionization potential
12.4 Average energy per ion pair, W
12.4.1 Experimental values of W for pure gases
12.4.2 W for gas mixtures
12.5 Ionization in solids

Module 13           Dosimetric Quantities, Units & Inter-relationships
13.1 Introduction
13.2Fundamental quantities in dosimetry
13.3 Exposure
13.4 Particle and Energy Fluence
13.5 Kerma & Cema
13.6 Components of kerma
13.7 Mass energy transfer coefficients and mass energy absorption coefficients
13.8 Kerma for photons
13.8.1 Kerma and fluence
13.8.2 Kerma and exposure
13.9 Absorbed and Equivalent Dose
13.10 Stopping power
13.11 Interrelationships Between Dosimetric Units
13.12 Relationships between dosimetric quantities (photons)
13.12.1 Kerma from fluence
13.12.2 Absorbed Dose from kerma and fluence
13.13 Charged Particle Equilibrium (CPE)
13.14 Relationships between dosimetric quantities (electrons)
13.14.1 Dose from cema and fluence

Module 14           Cavity Theory
14.1 Introduction
14.2 Cavity theory
14.3 Bragg-Gray 
14.4 Spencer-Attix
14.5   The concept of the Spencer-Attix cavity theory
14.6   Considerations in the application of cavity theory to ionization chamber calibration and dosimetry protocols
14.7  Large cavities in photon beams
14.8   Burlin cavity theory for photon beams
14.9   Summary
14.9.1 Large Cavities
14.9.2 Medium Cavities
14.10 Interfaces between dissimilar media

Module 15           Cavity Theory II: Dosimeters
15.1 Introduction – General Properties of Dosimeters
15.2 Dosimetry
15.3 Absolute dosimeters
15.3.1 Dose to medium

Module 16           Ionization Chambers
16.1 Gas-Filled Detectors
16.2 Ionisation Chambers
16.2.1 Saturation
16.2.2 Polarity Chamber polarity effects: polarity correction factor kpol
16.2.3 Chamber Characteristics: Stem Leakage
16.2.4 Temperature and pressure
16.2.5 Dosimeter considerations for electrons
16.3 Ionization chamber concepts
16.3.1 Effective Atomic Number
16.3.2 Electrometer
16.4 Types of Ionisation Chambers
16.4.1 Thimble-Type
16.4.2 Farmer Chamber
16.4.3 Flat-cavity (or Parallel-plate) and extrapolation chambers

Module 17           Other Gas Detectors, Detector Limitations and QA
17.1 Other Gas Detectors
17.1.1 Ionization Chambers
17.1.2 Proportional Counters
17.1.3 Geiger-Muller Counters
17.2 Area Survey Meters
17.3 Other everyday use: Smoke detectors
17.4 Efficiency of Monitoring Methods
17.5 Dead Time
17.6 Quality Assurance
17.4.1  Quality assurance in radiotherapy
17.4.2 Quality control
17.4.3 Quality standards
17.7  External Beam Dose Calculation   
17.7.1 Percent Depth Dose (PDD)
17.7.2 Mayneord F Factor
17.7.3 Tissue Ratios (TAR)
17.7.4 Tissue Phantom Ratio (TPR)
17.7.5 Tissue Maximum Ratio (TMR)
17.7.6  Back Scatter Factor
17.7.7  Scatter Factors
17.7.8  Total Scatter Factor (Sc,p)
17.7.9  Collimator Scatter Factor (Sc)
17.7.10  Phantom Scatter Factor (Sp)
17.7.11  Converting Between PDD, TAR, TMR, and TPR


Module 18           Semiconductor Detectors
18.1    Introduction
18.2    Basic principles
18.3    Scintillation detectors
18.4    Semiconductor or Solid-State Detectors
18.4.1    Basic Operation of Reverse-Biased Semiconductor Junction Detectors
18.4.2    Intrinsic Semiconductors and Doping
18.4.3    Semiconductor Junctions
18.4.4    Reverse biasing
18.4.5    Diode Detectors
18.4.6    Limitations of Semiconductor Detectors

Module 19           Scintillation Detectors and Thermoluminescence
19.1    Scintillation Detectors
19.1.1    Inorganic scintillation detectors
19.1.2    Liquid scintillation counting
19.2    Thermoluminescence
19.2.1    Thermoluminescent Dosimetry 
19.2.2    Principles of TL Dosimetry
19.2.3    Thermoluminescence background information 
19.2.4    Thermoluminescence detector usage

Module 20           Other Dosimeters and Survey Meters
20.1    Optically Stimulated Luminescence
20.2    MOSFET dosimetry systems
20.2.1    The MOSFET structure
20.3    Film Dosimetry
20.3.1    Radiochromic Film Limitations
20.3.2    Radiochromic Film Calibration
20.3.3    Film Badges
20.4    Gel Dosimetry
20.5    Neutron Detectors
20.6    Summary
20.7    Radiation Monitoring
20.7.1    Calibration and Properties of Survey Meters
20.7.2    Calibration and Properties of Individual Meters
20.8    Primary Standards
20.8.1    Primary standard for air kerma in air
20.8.2    Primary standards for absorbed dose to water
20.8.3    Chemical dosimetry standard for absorbed dose to water
20.8.4    Calorimetric standard for absorbed dose to water
20.9    Phantoms – water equivalent plastics
20.10    Bolus/Energy Degraders - Tissue Compensation
20.11    Monte Carlo techniques in radiation simulation: Introduction
20.11.1    Monte Carlo method for simulation of photon and electron transport


Module 21           Properties of Dosimeters
21.1    introduction
21.2    Accuracy and Precision
21.2.1    Type “A” Standard Uncertainties
21.2.2    Type “B” Standard Uncertainties 
21.2.3    Combined and Expanded Uncertainties 
21.3      Linearity
21.4    Dose Rate Dependence
21.5    Energy Dependence
21.6    Directional dependence
21.7    Spatial Resolution and Physical Size
21.8    Readout Convenience
21.9    Convenience of Use

Module 22           Internal Dosimetry
22.1    Introduction
22.2    The Medical Internal Radiation Dose Formalism
22.2.1    Basic concepts
22.2.2    Principles of Internal Radionuclide Radiation Dosimetry
22.3    Calculation of Radiation Dose (MIRD Method)
22.3.1    Basic Procedure and Some Practical Problems
22.3.2    Cumulated Activity, Ã
22.3.3    Equilibrium Absorbed Dose Constant, Δ
22.3.4    Absorbed Fraction, ϕ 
22.3.5    Specific Absorbed Fraction, Φ, and the Dose Reciprocity Theorem
22.3.6    Mean Dose per Cumulated Activity, S
22.3.7    Whole-Body Dose and Effective Dose
22.3.8    Limitations of the MIRD Method
22.4.    Safety

Module 23           Monte-Carlo methods, theory and examples
23.1 Introduction 
23.2 Integration by Stone Throwing
23.3 Problem
23.3.1 Monte-Carlo Solution
23.3.2 Algorithm
23.4 Implementation
23.4.1 Implementation:
23.5 Assessment
23.6 Extension: General Functions
23.7 Exercise
23.7.1 Where's Computational Thinking?
23.7.2 Where’s the Math?

Module 24           Principles of Monte Carlo Calculations and Codes
24.1 Phase Space
24.1.1 Phase Space Density
24.1.2 The Boltzmann Equation
24.2 The Mathematical Basis of the Monte Carlo method
24.2.1 Mean of a Distribution
24.2.2 Central Limit Theorem
24.2.3 Analog Monte Carlo
24.3 Integration by Monte Carlo 
24.3.1 Integration Efficiency
24.3.2 Random Sampling
24.3.3 Random and Pseudorandom Numbers
24.3.4 Other Sampling Techniques
24.4 Particle Transport Monte Carlo
24.4.1 Model-Based and Table-Based Codes
24.5 Thresholds and Cut-offs
24.5.1 Transport Thresholds
24.5.2 Production Thresholds
24.6 Practice in Beam attenuation problems
24.6.1 Beam attenuation in homogeneous medium
24.6.2 Monte-Carlo implementation
24.6.3 Beam attenuation in non-homogeneous medium
24.6.4 Monte-Carlo implementation
24.6.5 Attenuation and scattering
24.6.6 Monte-Carlo implementation

Module 25      Monte Carlo Modelling in Medical Radiation Physics
25.1 Introduction
25.2 The Monte Carlo Method in Medical Radiation Physics
25.3 Monte Carlo techniques in radiation simulation: Introduction
25.4 Monte Carlo method for simulation of photon and electron transport 
25.5 Common Monte Carlo codes for medical radiation physics
25.5.1 EGSnrc 
25.5.2 Geant4 
25.5.3 GAMOS Project
25.5.4 Geant Human Oncology Simulation Tool (GHOST) project
25.5.5 TOPAS 
25.5.6 Geant4 with Gate
25.5.7 GATE V6: A platform enabling modelling of CT and radiotherapy
25.5.8 MCNPX, MCNP5 or MCNP6
25.5.9 Fluka 
25.5.10 PRIMO
25.5.11 PENELOPE



ANHB5451 - Anatomy and Biology for Medical Physicists



Module 1: An Introduction + Cells I    
•    Basic structural components of a mammalian cell    
•    Interaction of cells with their extracellular environment    
•    Cellular organelles common to most cell types and their function in the cell
•    Arrangement of cells in different organs / tissues and its relation to the organ function
•    Phases of the cell cycle and mechanisms of apoptosis / necrosis  


Module 2: Cells II - Protein synthesis, DNA              
•    Cellular components involved in protein synthesis and summary of the process 
•    Process of the transcription and translation of DNA and RNA
•    How are proteins transported within a cell and excreted from cells? 
•    The risks from radiation exposure to the processes associated with DNA replication

Module 3: Embryology and Development                    
•    Major steps in the development of the embryo during the first 6 weeks post conception
•    Development events that continue after birth and the biological aspects of growth 
•    Role of proteins and cellular signalling in development    
•    Potential effects of radiation exposure on development and growth    

Module 4: Planes of the body and surfaces        
•    Name the three principal planes of the body and illustrate them in the axial and appendicular body while it stands upright, is lying horizontal and prone.
•    Use anatomical axis terminology appropriately to describe and demonstrate the range of movements allowed at freely movable joints of the axial and appendicular adult human body.
•    Demonstrate appropriate use of a range of directional terms to describe the relative location of individual body elements.
•    Explain the the way in which the internal body cavity structure affects imaging from different surface anatomy locations on the axial body.

Module 5: Cancer Cell Biology        
•    What is Cancer?
•    How does Cancer Develop?
•    Properties of Cancer
•    Cancer Risk Factors
•    Types of Cancer
•    Treatment Options

Module 6: Skin and Mucosal surfaces        
•    Name four main roles of the skin as a body organ.
•    Describe the layered structure of skin and the functions supported by each layer.
•    List the body cavities where mucosal surfaces provide a protective barrier.
•    Describe the variations in the structure and function of epithelial mucosa in different body systems and explain the ways in which these contribute to body homeostasis.  Illustrate using three body systems.
•    Demonstrate your understanding of the importance of an intact epithelium by explaining the potential consequences of injury and disease-related changes in epithelium.  Illustrate with an example.


Module 7: Nervous System I and II              
•    The role of the neural tube in brain development 
•    Cell types in the CNS and PNS, and their specific roles in normal function
•    Difference between the CNS and PNS    
•    Mechanisms for signal transmission in the nervous system and its regulation
•    Different parts of the brain and spinal cord 

Module 8: Brain/Head Anatomy        
•    Identify on images the different parts of the brain and head 
•    Outline the anatomy and function of CSF, blood supply and drainage of the brain    
•    Anatomy of the skull and Facial skeleton and its relationship to imaging    
•    Connect the embryology and adult anatomy of the head and neck        

Module 9: Bone, Skeleton and Bone Growth        
•    Name and indicate the location of the bones of the appendicular skeleton.
•    Name and indicate the location of the bones of the axial skeleton including the regions of the vertebral column.
•    Describe and contrast the respective tissue architecture of bone and cartilage.
•    Relate the cellular and matrix composition of ligaments & tendons, bone and cartilage to its appearance on being imaged. 
•    List the main anatomical features of a simple synovial joint and describe their function.
•    Describe the two main processes of bone formation before and after birth 
•    Outline the biological steps of fracture repair.
•    Describe and justify anticipated changes in the clinical imagery of the skeleton following injury or disease.

Module 10: Blood and Bone Marrow                        
•    Describe the features of blood as a tissue and its function in the circulatory system.
•    Describe the special characteristics of bone marrow as a tissue and its function in the lymphatic system.
•    Name five mature blood cell types in circulating blood and two found in tissues.  Outline the function of each one and how cell size and shape reflects their role.
•    Explain the respective roles of red and yellow bone marrow in blood cell development in different stages of life. 
•    Outline the main steps of hemopoietin in the adult and where in the body it can occur.

Module 11: Cardiovascular System           
•    Describe the main role and other functions performed by the cardiovascular system (CVS) in the healthy body and name its two major organ components.
•    List the great vessels of the heart, its muscular chambers, its valves and accessories.
•    Outline the route that blood follows through the heart (great vessels, chambers and valves) in distributing blood around the pulmonary and systemic circulations, respectively.
•    Name the three types of blood vessels in the CVS, describe their roles and contrast their structural features in relation to function.
•    Describe the role of the “cardiac pacemaker” in generating heart beats, naming the nodes and the means of electrical distribution over the heart.
•    Outline the events that comprise the diastolic and systolic phases of the cardiac cycle.
•    Explain why impairment of CVS function leads to the symptoms of heart disease and peripheral vascular disease.  
•    Illustrate with a specific example explaining the underlying cause of a symptom and its effect.

Module 12: Immunology and Lymphatic System            
•    List the three major roles of the lymphatic system and for each role, briefly describe the activities and locations involved.
•     Outline the lymphatic system components encountered sequentially in a route that returns fluid from a tissue’s parenchyma back to the bloodstream; describe the key functional features of each component.
•    Name the five lymphoid organs, their location in the body, and explain which are called “primary” and “secondary” and why.
•    List examples of physical, functional, chemical and biological barriers in the non-immunological defence system and explain how they defend.
•    As regards the agents involved in the innate immune system, list the cell types, their condition and some of the soluble factors involved.
•    Compare and contrast the cell actors in the innate, and adaptive immune systems, and explain main difference between the two systems.
•    Describe the distinguishing features of cellular and humoral immunity including the methods of target destruction.
•    Explain ‘self-tolerance’ and its relevance in one example of immune impairment.

Module 13: Respiratory System    
•    Anatomical divisions of the respiratory system and principal organs    
•    Functional partition of the respiratory system
•    Main function during breathing    
•    Branching of the bronchial tree within the lungs 
•    Structural changes in bronchi and their relation to lung function    
•    Cell types of the alveolus and their specialised roles  


Module 14: Digestive tract - Large intestine emphasis    
•    Describe the role of the digestive (or alimentary) system.
•     List the main parts of the digestive system including the gastrointestinal tract and accessory organs.
•    Describe the segmentation of the gastrointestinal tract and name any sub-sections within each segment.
•    Compare and contrast the main macro anatomical features of each segment of the gastrointestinal tract.
•     Name the microscopic layers (5) of the intestinal tube in cross section starting from central lumen then outward to the abdominal cavity.
•    Describe the functional roles of the oesophagus, stomach, small intestine and large intestine respectively, and explain how their form (for example, folds) supports that function.
•    List two common abnormalities seen in the large intestine and the structural changes that aid their detection by imaging.

Module 15: Liver/Pancreas
•    Describe the location in the body of these digestive system accessory structures, the liver, gall bladder and pancreas.
•    Explain the role of the liver and gall bladder in the function of the digestive system.
•    Describe the role of the pancreas in the function of the digestive system.
•    List a common abnormalities affecting each of the liver, gall bladder and pancreas.


Module 16: Kidney and Urinary System                            
•    Explain the major role of the urinary system and its five main functions to support that role
•    List the organs of the urinary system and their location
•    Name the three main anatomical regions of the kidney
•    Describe the three functional processes undertaken by the nephron
•    Name the types of cells lining the kidney and urinary tracts and explain how these related to local function
•    List the substances which are filtered, resorbed and excreted from the healthy kidney
•    Outline the main hormonal influence(s) on kidney function and the way in which that influence body fluid balance.

bottom of page